Maximizing a supermodular pseudoboolean function: A polynomial algorithm for supermodular cubic functions
نویسندگان
چکیده
منابع مشابه
Greed is Still Good: Maximizing Monotone Submodular+Supermodular Functions
We analyze the performance of the greedy algorithm, and also a discrete semi-gradient based algorithm, for maximizing the sum of a suBmodular and suPermodular (BP) function (both of which are non-negative monotone non-decreasing) under two types of constraints, either a cardinality constraint or p ≥ 1 matroid independence constraints. These problems occur naturally in several real-world applica...
متن کاملSupermodular Functions on Finite Lattices
The supermodular order on multivariate distributions has many applications in financial and actuarial mathematics. In the particular case of finite, discrete distributions, we generalize the order to distributions on finite lattices. In this setting, we focus on the generating cone of supermodular functions because the extreme rays of that cone (modulo the modular functions) can be used as test...
متن کاملCore-based criterion for extreme supermodular functions
We give a necessary and sufficient condition for extremality of a supermodular function based on its min-representation by means of (vertices of) the corresponding core polytope. The condition leads to solving a certain simple linear equation system determined by the combinatorial core structure. This result allows us to characterize indecomposability in the class of generalized permutohedra. W...
متن کاملGreedy Minimization of Weakly Supermodular Set Functions
This paper defines weak-α-supermodularity for set functions. It shows that minimizing such functions under cardinality constrains is a common task in machine learning and data mining. Moreover, any problem whose objective function exhibits this property benefits from a greedy extension phase. Explicitly, let S∗ be the optimal set of cardinality k that minimizes f and let S0 be an initial soluti...
متن کاملCovering symmetric supermodular functions by uniform hypergraphs
We consider the problem of finding a uniform hypergraph that satisfies cut demands defined by a symmetric crossing supermodular set function. We give min-max formulas for both the degree specified and the minimum cardinality problem. These results include as a special case a formula on the minimum number of r-hyperedges whose addition to an initial hypergraph will make it k-edge-connected.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 1985
ISSN: 0166-218X
DOI: 10.1016/0166-218x(85)90035-6